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We study the low-energy effective theory for a non-Fermi-liquid state in 2+1 dimensions, where a transverse
U�1� gauge field is coupled with a patch of Fermi surface with N flavors of fermion in the large N limit. In the
low-energy limit, quantum corrections are classified according to the genus of the two-dimensional surface on
which Feynman diagrams can be drawn without a crossing in a double line representation and all planar
diagrams are important in the leading order. The emerging theory has the similar structure to the four-
dimensional SU�N� gauge theory in the large N limit. Because of strong quantum fluctuations caused by the
abundant low-energy excitations near the Fermi surface, low-energy fermions remain strongly coupled even in
the large N limit. As a result, there are infinitely many quantum corrections that contribute to the leading
frequency dependence of the Green’s function of fermion on the Fermi surface. On the contrary, the boson
self-energy is not modified beyond the one-loop level and the theory is stable in the large N limit. The
nonperturbative nature of the theory also shows up in correlation functions of gauge-invariant operators.
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I. INTRODUCTION

Understanding non-Fermi-liquid states is one of the cen-
tral problems in condense-matter physics. One way of ob-
taining non-Fermi liquids is to couple a Fermi surface with a
massless boson. If a massless boson is associated with criti-
cality achieved by fine tuning of microscopic parameters, a
non-Fermi-liquid state arises at a quantum critical point.
Such non-Fermi-liquid states have been observed in heavy
fermion compounds near magnetic quantum critical
points.1–3 On the other hand, a boson can be dynamically
tuned to be massless, and a non-Fermi-liquid state may occur
within a finite parameter space. The latter case may arise in
the half-filled Landau level of quantum Hall systems4 and
some spin liquid states.5

Non-Fermi-liquid states in 2+1 dimensions are of particu-
lar interest. Experimentally, high-temperature superconduct-
ors which exhibit non-Fermi-liquid behaviors in the strange
metallic normal state5 are quasi-two dimensional. There also
exist two-dimensional �2D� frustrated magnets6,7 whose
ground states may be related to a non-Fermi-liquid state of
fermionic spinons which carry only spin half but no charge.8

In the spin liquid state, fermionic spinons form a Fermi sur-
face which is minimally coupled with an emergent U�1�
gauge field.9,10 The transverse component of the gauge field
remains gapless at low energies because it is not fully
screened by particle-hole excitations. The long-range inter-
action mediated by the transverse gauge field leads to a non-
Fermi-liquid state.4,11–15 The same low-energy effective
theory can arise in various microscopic models, such as frus-
trated boson systems.16 Fermi surface of spinless charged
fermion coupled with U�1� gauge field has been also pro-
posed for underdoped cuprates.17 On the theoretical side, two
space dimension is special in that it is high enough to have
an extended Fermi surface, while it is low enough to support
strong quantum fluctuations in the low-energy limit. As a
result of strong quantum fluctuations and infinitely many
gapless excitations on an extended Fermi surface, it is ex-
pected that a nontrivial interacting quantum field theory,

which is very different from relativistic quantum field theo-
ries, can emerge in the low-energy limit. Even if the non-
Fermi-liquid state turns out to be unstable against other more
conventional states,18,19 the physics within a significant tem-
perature range will be inherited from the unstable non-
Fermi-liquid state and it is still important to understand the
parent non-Fermi-liquid state.

Considerable studies have been devoted to the low-energy
effective theory of Fermi surface coupled with U�1� gauge
field in 2+1D.12–16 In this system, there is no controllable
parameter other than the number of fermion flavors N.
Therefore it is natural to attempt to develop a perturbative
expansion in terms of 1 /N�N� in the large �small� N
limit.12,13,15,16 Based on the computation of some leading-
order diagrams, it has been suggested that the 1 /N expansion
is well defined and the low-energy limit is described by a
stable interacting theory in the large N limit. The purpose of
this paper is to study the low-energy effective theory of the
non-Fermi-liquid state more systematically in the large N
limit. The key result of the paper is that the theory is not in
a perturbative regime even in the large N limit because there
are infinitely many leading-order quantum corrections for
vertex functions of fermions residing on the Fermi surface.
This conclusion has been reached by a systematic classifica-
tion of quantum corrections in the 1 /N expansion. Strong
quantum fluctuations associated with the infinitely many
gapless excitations and the absence of the Lorentz symmetry
make the classification very different from relativistic quan-
tum field theories. The theory remains strongly coupled in
the low-energy limit and even the leading-order quantum
corrections cannot be summed in a closed Dyson equation
which can be truncated with a finite number of vertex cor-
rections.

The paper is organized in the following way. In Sec. II,
we start by constructing a minimal local action �given in
Eq. �5�� that captures the universal low-energy physics of the
2+1-dimensional non-Fermi-liquid state. The minimal action
is a renormalizable theory through which one can probe the
universal low-energy physics at any �finite� energy scale by
sending all UV cutoff and crossover scales to infinity. This
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makes the analysis of the low-energy physics more transpar-
ent because all nonuniversal elements of the theory have
been stripped away from the minimal action. The peculiar
property of the present nonrelativistic theory with Fermi sur-
face is that all local time derivative terms are irrelevant in the
low-energy limit. Nonetheless one cannot completely drop
the time derivative terms from the bare action because if one
does so, the theory will not have any dynamics. Therefore
one needs to consider a special low-energy limit to retain
nontrivial dynamics while keeping only universal properties
of the low-energy theory. After we discuss the low-energy
limit of the minimal theory, in Sec. III we classify quantum
corrections in the large N limit. In Sec. III A, we show that a
naive 1 /N expansion does not work because power of a
Feynman graph in N is enhanced in the low-energy limit.
This is due to strong quantum fluctuations enhanced by
abundant gapless particle-hole excitations near the Fermi
surface. More specifically, the leading frequency dependence
of the fermion propagator is of the order of 1 /N. Due to the
suppressed frequency dependence, magnitudes of Feynman
diagrams are enhanced whenever there exists a channel for
virtual particle-hole excitations to remain on the Fermi sur-
face. Based on this observation, in Sec. III B, we show that
general Feynman diagrams are classified according to the
genus of a 2D surface on which Feynman diagrams are
drawn without a crossing in a double line representation.
Here the double line representation is useful, not because
gauge boson or fermions carry a doubled quantum number,
but because it allows one to easily count in how many ways
particle-hole excitations can remain on the Fermi surface. In
particular, when a fermion is on the Fermi surface, the fer-
mion propagator is enhanced to the order of N due to the
suppressed frequency dependence. If there are n closed
single-line loops in the double line representation, all virtual
particle-hole excitations can remain right on the Fermi sur-
face no matter what n components of internal momenta are.
The abundant low-lying excitations give rise to an enhance-
ment factor with a positive power of N in proportion to the
number of independent channels via particle-hole excitations
remain on the Fermi surface. Due to the enhancement factor,
there exist infinitely many leading-order quantum corrections
for vertex functions of fermions on the Fermi surface. In
particular, one has to sum over infinitely many planar dia-
grams to compute the leading frequency dependence of the
fermion propagator. Although fermions on the Fermi surface
are strongly coupled, the boson propagator is not modified
beyond the one-loop level in the large N limit due to a kine-
matical constraint.

The genus expansion of Feynman diagrams in the present
non-Fermi-liquid state is very similar to that of the four-
dimensional SU�N� gauge theory in the large N limit.20 In
both theories, strong quantum fluctuations make all planar
diagrams to contribute to the quantum effective action in the
leading order of the 1 /N expansion. However, the physical
origins for strong quantum fluctuations are very different be-
tween the two theories. In the SU�N� gauge theory, it is due
to fluctuations of color degrees of freedom in the internal
space while in the present theory, it is due to fluctuations of
the extended Fermi surface in the momentum space.

In Sec. IV, we study the dynamical properties of the
theory in the large N limit. It is shown that there is no UV

divergence in individual planar diagrams. As a result, the
theory is stable and there is no quantum correction to the
scaling dimension of fermion beyond one-loop order if the
summation of individually finite planar diagrams are finite.
In Sec. V, we discuss how the nonperturbative nature of the
theory manifests itself in correlation functions of a gauge-
invariant operator.

II. MINIMAL THEORY AND LOW-ENERGY LIMIT

A. Minimal local action

We consider N flavors of fermion with Fermi surface
coupled with a U�1� gauge boson in 2+1D. In the low-
energy limit, fermions whose velocities are not parallel or
antiparallel to each other are essentially decoupled because
�1� fermions are strongly coupled only with the boson whose
momentum is perpendicular to the Fermi velocity for a kine-
matic constraint and �2� the angle that parametrizes Fermi
surface acquires a positive anomalous scaling dimension, be-
coming a decompactified variable which runs from −� to �
in the low-energy limit.21 As a result, two fermions which
have different Fermi velocities cannot interact with each
other through any finite number of scatterings with the boson
in the low-energy limit.22 Therefore, in the low-energy effec-
tive theory, it is justified to focus fermionic excitations lo-
cally in the momentum space. In general, one has to consider
all patches in which Fermi velocities are parallel or antipar-
allel to each other because all of them are strongly coupled
with the boson in the same momentum region.

In this paper, we will focus on low-energy fermions near
one patch in the momentum space. As we will see, under-
standing low-energy dynamics in this simplified case is al-
ready nontrivial. At the end, we will comment on the appli-
cability of this restricted theory and an extension to general
cases which include other patches with opposite Fermi ve-
locity. We consider the Lagrangian density,

L = �
j

� j
���� − ivx�x − vy�y

2�� j +
e

�N
�

j

a� j
�� j

+ a�− ��
2 − �x

2 − �y
2�a , �1�

where � j is the fermion of flavor j=1,2 , . . . ,N. We have
chosen the Fermi velocity to be along the x direction at k
=0. vx is the Fermi velocity and vy � 1

m determines the cur-
vature of the Fermi surface. The Fermi surface is on vxkx
+vyky

2=0 as is shown in Fig. 1. This is a “chiral Fermi sur-
face” where the x component of Fermi velocity is always
positive. a is the transverse component of an emergent U�1�
gauge boson in the Coulomb gauge � ·a=0. We ignore the
temporal component of the gauge field which is screened to
a short-range interaction. The transverse gauge field is mass-
less without a fine tuning due to an emergent U�1� symmetry
associated with the dynamical suppression of instantons.21,23

e is the coupling between fermions and the critical boson.
In the one-loop order, singular self-energies are generated

from the diagrams in Figs. 2 and 3, and the quantum effec-
tive action becomes
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� = �
j
� dk	i

c

N
sgn�k0�
k0
2/3 + ik0 + vxkx + vyky

2�� j
��k�� j�k�

+� dk	�

k0


ky


+ k0
2 + kx

2 + ky
2�a��k�a�k�

+
e

�N
�

j
� dkdq a�q�� j

��k + q�� j�k� , �2�

where c and � are constants on the order of 1. To compute
the fermion self-energy, the dressed boson propagator has
been used because the boson self-energy is on the order of 1.
In the low-energy limit, the leading terms of the quantum
effective action are invariant under the scale transformation,

k0 = b−1k0�,

kx = b−2/3kx�,

ky = b−1/3ky�,

�a�b−1k0�,b
−2/3kx�,b

−1/3ky�� = b4/3�a��k0�,kx�,ky�� ,

a�b−1k0�,b
−2/3kx�,b

−1/3ky�� = b4/3a��k0�,kx�,ky�� . �3�

The singular self-energies render the terms,

ik0� j
��k�� j�k� ,

�k0
2 + kx

2�a��k�a�k� �4�

irrelevant in the low-energy limit. Usually, it is expected that
one restores the same low-energy quantum effective action if
one drops the irrelevant terms from the beginning. However,
this is not true in this case. If one drops the irrelevant terms
in the bare action, then the resulting theory becomes com-
pletely localized in time and one cannot have a propagating
mode. If there is no frequency dependence in the bare action,
the frequency-dependent singular self-energies cannot be
generated either. Therefore, to restore the full low-energy
dynamics, one has to keep the least irrelevant frequency de-
pendent local term. It turns out that the following action
given by

L = �
j

� j
����� − ivx�x − vy�y

2�� j +
e

�N
�

j

a� j
�� j + a�− �y

2�a ,

�5�

is the minimal local theory which restores the one-loop quan-
tum effective action �Eq. �2��. Here � is a parameter which
has the dimension −1 /3 according to the scaling �Eq. �3��.

Since the time derivative term is irrelevant, � will flow to
zero in the low-energy limit and the bare value of � does not
affect any low-energy physics as far as it is nonzero. The role
of the nonzero � is to give a nontrivial frequency-dependent
dynamics by maintaining the minimal causal structure of the
theory before it dies off in the low-energy limit. For ex-
ample, in the computation of the one-loop boson self-energy
�Fig. 2� in

��q� = e2� d3k
1

i��k0 + q0� + vx�kx + qx� + vy�ky + qy�2

1

i�k0 + vxkx + vyky
2 = �


q0


qy


, �6�

the sign of � contains the information on whether the pole is
on the upper or lower side in the complex plane for the kx
integration. The final result is independent of �. As far as the
“topological” information on the location of poles is kept for
the fermions, it generates the correct frequency-dependent
self-energy for the boson in Eq. �6�. Therefore we can com-
pletely drop the time derivative term of the boson in the bare

action �Eq. �1��. The boson self-energy, in turn, generates the
frequency-dependent fermion self-energy through Fig. 3.

B. Low-energy limit and large N limit

At low energy k0	E� with E�= �N��−3, the dynamically
generated fermion self-energy is dominant over the bare term

FIG. 2. The one-loop boson self-energy.
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FIG. 1. The parabolic Fermi surface of the model in Eq. �1�. The
shaded region includes negative-energy states.
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i�k0. Here E� is a crossover energy scale below which phys-
ics is described by the scale-invariant universal theory. To
study the low-energy physics, we will fix our energy scale E
and send a UV cutoff 
 and the crossover scale E� to
infinity.24 In taking the low-energy limit, it is convenient to
maintain the UV cutoff 
 to be smaller than the crossover
scale, that is,

E 	 
 	 E�. �7�

First, a Feynman diagram with an external energy E is com-
puted with finite �, 
 and N. To maintain �Eq. �7��, we take
the �→0 limit first and then 
→� limit later. Finally, we
take the large N limit. This amounts to imposing condition
�7� for all N as N is progressively increased in the large N
limit. In this way, we can keep the bare time derivative term
to be always smaller compared to the singular self-energy at
all energy scales. In this limit, not only the IR physics but
also the UV physics is controlled by the same universal
theory. This is particularly convenient to study universal
low-energy dynamics of the theory at the critical dimension
which is dc=2+1 in this case. This is because any logarith-
mic IR divergence is reflected to a UV divergence and one
can read the renormalization group flow by keeping track of
UV divergences. We will exploit this property to study dy-
namical properties of the theory in Sec. IV.

The action �Eq. �5�� has four terms which are marginal at
the one-loop level. On the other hand, there are five param-
eters that set the scales of energy momentum and the fields.
Out of the five parameters, only four of them can modify the
coefficients of the marginal terms because the marginal terms
remain invariant under the transformation �Eq. �3��. Using
the remaining four parameters, one can always rescale the
coefficients of the marginal terms to arbitrary values. There-
fore, there is no dimensionless parameter in this theory ex-
cept for the fermion flavor N. In the following, we will set
vx=vy =e=1. With this choice, c and � in Eq. �2� are auto-
matically on the order of 1. The coefficients of the nonlocal
terms are not independent tunable parameters because those
parameters are completely determined from the local terms.

III. 1 ÕN EXPANSION

A. Failure of a perturbative 1 ÕN expansion

In the naive counting of power in 1 /N, a vertex contrib-
utes N−1/2 and a fermion loop contributes N1. In this count-
ing, only the fermion RPA diagram �Fig. 2� is on the order of
1 and all other diagrams are of higher order in 1 /N. In the
leading order, the propagators become

g0�k� =
1

i�k0 + kx + ky
2 ,

D�k� =
1

�

k0


ky


+ ky
2

. �8�

One can attempt to compute the full quantum effective
action by including 1 /N corrections perturbatively. However,
we will see that this naive 1 /N expansion breaks down in the
low-energy limit. To see this, let us consider a two-loop ver-
tex correction shown in Fig. 4,

��p,p + q� = − N−3/2� dkdl g0�k�g0�k + q�

�g0�k + l�g0�p + l�D�l�D�l − q� . �9�

Let us focus on the case with p=0. Without loss of general-
ity, we can assume q0 ,qy �0. Integrating over kx, ky, and lx,
one obtains

��0,q� = − N−3/2� dl0dlydk0
F�l0,ly,k0,q0,qy�

ly
q + i�lyq0
, �10�

where

F�l0,ly,k0,q0,qy� = 4�3i���l0 + k0� − ��l0��

� ���k0 + q0� − ��k0��

����qy − ly� − ��qy��D�l�D�l − q�
�11�

is a function which is independent of � and N, with ��x�
being a step function, and 
q=qx+qy

2 is the “distance” of q
from the Fermi surface. If the final momentum of the fer-
mion is also on the Fermi surface, that is, 
q=0, the vertex
correction becomes

��0,q� = −
N−3/2

�q0
1/3 f1�qy/q0

1/3� , �12�

where f1�t� is a nonsingular universal function which is in-
dependent of N and �,

FIG. 3. The one-loop fermion self-energy. Here the boson
propagator is a dressed propagator which include the one-loop self-
energy correction in Fig. 2.

k + q

k
l

k + l

l − q

p + lq

p + q

p

FIG. 4. A two-loop vertex correction.
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f1�t� = 4�3�
−1

0

dx�
0


x


dy�
1

�

dz

�
t2�z − 1�

��y + �tz�3����1 − y� + t3�z − 1�3�
. �13�

In the �→0 limit, this two-loop vertex correction which
connects two fermions on the Fermi surface diverges. This
divergence is quite generic: a vertex function which connects
fermions on the Fermi surface diverges as 1 /�n for some
integer n in general. The physical reason for this divergence
is simple. In the �→0 limit, the bare fermion propagator is
independent of frequency and the integration over frequen-
cies is ill defined. This divergence is unphysical in the sense
that it disappears once the frequency-dependent fermion self-
energy correction is included. If one include the one-loop

fermion self-energy �Fig. 3�, the dressed fermion propagator
becomes

g�k� =
1

i�k0 + i
c

N
sgn�k0�
k0
2/3 + kx + ky

2

�14�

and the 1 /� divergence disappears. Instead, the resulting fi-
nite term becomes enhanced by a factor of Nn for some in-
teger n�0 because the zero in the denominator �in the �
→0 limit� is replaced by a term which is proportional to
1 /N. As a result, the two-loop vertex correction shown in
Fig. 4 becomes

��0,q� = − N−1/2f2�qy/q0
1/3� , �15�

where f2�t� is a nonsingular universal function which is in-
dependent of N and �,

f2�t� =
4�3

c
�

−1

0

dx�
0


x


dy�
1

�

dz
1


x + 1
2/3 + y2/3 + 
x + y
2/3 + �z − 1��
x + 1
2/3 + 
x
2/3�
t2z�z − 1�

��y + �tz�3����1 − y� + t3�z − 1�3�
.

�16�

The additional factor of N is from the enhancement factor
that arises due to the 1 /� divergence when the fermions are
on the Fermi surface. With the inclusion of the fermion self-
energy, the IR divergence in Eq. �12� has been traded with an
enhanced power in N in Eq. �15�.

Similar enhancement factors arise in other diagrams as
well. For example, a three-loop fermion self-energy correc-
tion shown in Fig. 5 is on the order of N−2 according to the
naive counting. However, the self-energy of fermion on the
Fermi surface �
p=0� diverges as 1 /� in the �→0 limit if
the bare fermion propagator in Eq. �8� is used. If one in-
cludes the one-loop self-energy of fermion, it becomes on the
order of N−1,

��p� = − i
c3

N
sgn�p0�
p0
2/3, �17�

when the external fermion is on the Fermi surface. Here c3 is
a universal constant on the order of 1.

This discrepancy between the cases with a finite � and an
infinitesimally small � can be understood is the following
way. With a finite �, there is a crossover around the scale
q0�E�. For q0�E�, the i�k0 is dominant in the fermion

propagator and a Feynman diagram obeys the naive counting
in 1 /N. On the other hand, for q0	E� quantum fluctuations
are controlled by the nonlocal term which is suppressed by
1 /N. The enhanced quantum fluctuations at low energies
lead to an enhancement factor by a positive power in N.
Since we are concerned about the low-energy physics, we
should consider the latter limit. This correct low-energy limit
is automatically taken by considering the �→0 limit with a
fixed energy scale q0. This enhancement in the power of N at
IR is a manifestation of the fact that quantum fluctuations
become stronger at low-energies.

B. Genus expansion

In the low-energy limit, what determines the power of a
Feynman diagram in 1 /N? To answer this question, one
should understand the origin of the enhancement factor dis-
cussed in the previous section more systematically. In the
present section, we will develop a simple geometrical way of
determining power of general Feynman graphs.

First, we illustrate the basic idea using the example �Fig.
4� considered in the previous section. As we have seen in the
previous section, the enhancement factor N is a consequence
of the 1 /� singularity in the �→0 limit. To understand the
origin of the 1 /� singularity, it is useful to examine the way
fermions are scattered near the Fermi surface. Suppose both
p and p+q are on the Fermi surface in Fig. 4. In the fermion
loop with running momentum k, the momentum of the fer-
mion consecutively becomes k , �k+q� , �k+ l� as a result of
scatterings. For a given external momentum q of the boson,
one can always choose the spatial momentum k to make bothFIG. 5. A three-loop fermion self-energy correction.
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k and k+q to be on the Fermi surface. There is one unique
choice, k=p. To make the next momentum k+ l to be on the
Fermi surface as well, one needs to tune only lx and there is
one remaining free parameter, ly. This is because the Fermi
surface has dimension one. As a result, all internal fermions
can remain right on the Fermi surface during the scattering
process no matter what the values of one momentum com-
ponent �ly� is if the other three momentum components �kx,
ky, and lx� are finely tuned. This implies that all four fermion
propagators are singular at �=0 in an one-dimensional mani-
fold which is embedded in the four-dimensional space k , l.
We refer to this manifold as a “singular manifold.” The codi-
mension of the singular manifold is 4−1=3 and there are
only three-dimensional integrations which contribute to the
phase-space volume and cancel the IR divergence. Since the
product of the propagators has a singularity whose strength is
4, the integration over the three parameters cannot com-
pletely remove the singularity and the strength of the remain-
ing singularity becomes 4−3=1. This explains why Fig. 4
has the singularity of 1 /� when the bare fermion propagator
is used and why it has the enhancement factor N when the
one-loop dressed propagator is used. The enhancement factor
N for the fermion self-energy in Fig. 5 can be understood in
the similar way.

What determines the dimension of the singular manifold
within which fermions always remain on the Fermi surface?
It turns out that the dimension of the singular manifold is
given by the number of closed loops when one draws boson
propagators using double lines and fermion propagators us-
ing single lines. This can be shown by following the scheme
used to prove the Migdal’s theorem in the electron-phonon
system.25,26 First, we restrict momenta of all fermions to be
on the Fermi surface. A momentum k� of fermion on the
Fermi surface is represented by an one-dimensional param-
eter �. Then, a momentum of the boson q is decomposed into
two momenta on the Fermi surface as q=k�−k��, where both
k� and k�� are on the Fermi surface. This decomposition is
unique because there is only one way of choosing such k�

and k�� near k=0. As far as momentum conservation is con-
cerned, one can view the boson of momentum q as a com-
posite particle made of a fermion of momentum k� and a
hole of momentum k��. For example, the two-loop vertex
correction in Fig. 4 and the three-loop fermion self-energy
correction in Fig. 5 can be drawn as Figs. 6�a� and 6�b�,

respectively, in this double line representation. In this repre-
sentation, each single line represents a momentum on the
Fermi surface. Momenta in the single lines that are con-
nected to the external lines should be uniquely fixed to make
all fermions stay on the Fermi surface. On the other hand,
momenta on the single lines that form closed loops by them-
selves are unfixed. In other words, all fermions can stay on
the Fermi surface no matter what the value of the unfixed
momentum component that runs through the closed loop is.
Since there is one closed loop in Fig. 6�a�, the dimension of
the singular manifold is 1 and the enhancement factor be-
comes N4−�4−1�=N for the two-loop vertex correction in Fig.
4. In Fig. 6�b�, there are two closed loop and the enhance-
ment factor for Fig. 5 becomes N5−�6−2�=N: there are five
fermion propagators, six spatial components of internal mo-
menta, and two closed loops.

The enhancement factor is a direct consequence of the
presence of infinitely many soft modes associated with de-
formations of the Fermi surface. The extended Fermi surface
makes it possible for virtual particle-hole excitations to ma-
neuver on the Fermi surface without costing much energy. As
a result, quantum fluctuations becomes strong when external
momenta are arranged in such a way that there are suffi-
ciently many channels for the virtual particle-hole excitations
to remain on the Fermi surface. This makes higher order
processes to be important even in the large N limit. We note
that this effect is absent in relativistic quantum field theories
where gapless modes exist only at discrete points in the mo-
mentum space.

Now we are ready to write down a general formula which
tells order of a general Feynman diagram in 1 /N. �1� First,
draw a Feynman diagram using single lines for fermion
propagators and using double lines for boson propagators.
�2� Second, each vertex contributes 1 /�N. �3� Third, each
fermion loop contributes N. �4� Finally, the enhancement fac-
tor is given by

N�If−2L+n�. �18�

Here If is the number of �internal� fermion propagators, L is
the number of loops �the number of internal momenta�, and n
is the number of closed single-line loops in the double line
representation. �x�=x if x�0 and �x�=0 if x�0. This en-
hancement factor can be understood as was illustrated in the
previous examples. When all fermions are on Fermi surface,
the product of propagators has the singularity with strength
If. Upon integrating over the internal momenta, the singular-
ity is lowered due to the contribution from phase-space vol-
ume. There are 2L components of spatial momenta but n of
them are degenerate in that all fermions remain on the Fermi
surface no matter what the values of the n momentum com-
ponents are as far as the remaining 2L−n components are
zero. Therefore, the integration over the internal momenta
can remove the singularity only by the power of �2L−n�. The
power of the remaining IR divergence is If − �2L−n� and this
results in the enhancement factor, N�If−2L+n�. If �2L−n�� If,
the suppression from the phase space of internal momenta is
more than enough to suppress the whole singularity and there
is no enhancement factor. In this case, the enhancement fac-
tor should be 1, not a negative power of N. That is why we

(a) (b)

FIG. 6. The double line representations of Figs. 4�a� and 5�b�.
Double lines represent propagators of the boson and the single lines
are the propagators of the fermion. The number of single-line loops
�one in �a� and two in �b�� represents the dimension of the singular
manifold �see the text� on which all fermions remain on the Fermi
surface in the space of internal momenta.
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use �If −2L+n� which is 0 if If � �2L−n�. By using the rela-
tion between L and If, If =2L+

Ef+2Eb

2 −2, where Ef�Eb� is the
number of external fermion �boson� lines, one can write the
enhancement factor as

N�n+�Ef+2Eb�/2−2�. �19�

As a result, the net order of a Feynman diagram is given
by NQ with

Q = −
V

2
+ Lf + 	n +

Ef + 2Eb

2
− 2� , �20�

where V is the number of vertices and Lf is the number of
fermion loops.

Now let us classify Feynman diagrams based on the ex-
pression, Eq. �20�, starting from vacuum diagrams. Classifi-
cation of nonvacuum diagrams with external lines naturally
follows from that of vacuum diagrams, as will be shown
shortly. The leading-order vacuum diagram is the one fer-
mion loop diagram which is on the order of N. In the next
order of N0, there are infinitely many diagrams. A typical
diagram on the order of N0 is shown in Fig. 7. For the dia-
gram in Fig. 7, we have V=38, n=15, Ef =Eg=0, and Lf =6,
which gives

Q = − 19 + 6 + �15 − 2� = 0. �21�

Actually, there is a simple geometrical way of interpreting
the result. First, we turn fermion propagators into double
lines as well by drawing additional single-line loops for each
fermion loop as in Fig. 8. In this way, we can include the
factor NLf from fermion loops by counting the additional
closed loops of single lines. We will refer to this way of
drawing a “full double line representation.” If n�2, which is
always the case for sufficiently large V if there are not too
many crossings, we can remove the bracket in Eq. �20� and
the power can be rewritten as

Q = V − I + F − 2. �22�

Here we use the identity 3V=2I, where I is the number of
total internal propagators and F=n+Lf is the total number of
single-line loops including the additional single-line loops
added to each fermion loop. In this full double line represen-
tation, one can think of a closed 2D surface formed by join-
ing the patches of single-line loops. The 2D surface is the
surface on which a Feynman diagram can be drawn without
any crossing in the full double line representation. The factor
�=V− I+F is nothing but the Euler number of the 2D closed
surface and the power Q becomes

Q = − 2g , �23�

where g is the genus of the 2D surface. The diagrams of the
N0 order are the planar diagrams which can be drawn on a
sphere.

For nonplanar diagrams, such as the one shown in Fig. 9,

FIG. 7. A typical vacuum planar diagram which is on the order
of N0. In planar diagrams, all fermion propagators which face to
each other flow in the opposite direction. In this way, fermions can
stay on the Fermi surface before and after scatterings.

FIG. 8. The full double line representation of the planar diagram
shown in Fig. 7. One can draw this diagram on the sphere without
any crossing. The solid double lines represent the boson propagator
and double lines made of one solid and one dotted lines represent
fermion propagators. Loops of dotted lines are added to each fer-
mion loops. In this representation, there is a factor of N for each
closed single-line loop whether it is a loop made of a solid or dotted
line.

FIG. 9. A nonplanar diagram which is on the order of N−2.
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one has to introduce closed surfaces with handles to draw
them in the full double line representation without a cross-
ing. This is illustrated in Fig. 10. Contributions from nonpla-
nar diagrams are suppressed as the number of genus in-
creases according to Eq. �23�.

Power counting of diagrams with external lines can be
easily obtained from the counting of vacuum diagrams. To
create a boson self-energy diagram, one attaches two vertices
to fermion propagators. The leading-order self-energy dia-
grams can be generated if two vertices are attached to fer-
mion propagators which are parts of one single-line loop. A
typical leading-order boson self-energy diagram created from
a planar vacuum diagram is shown in Fig. 11. From this
procedure, the boson self-energy diagram acquires the addi-
tional power of N−1 from two added vertices ��V=2�, N2

from two external boson lines ��Eb=2� and N−1 from a lost
single-line closed loop ��n=−1�. As a result, the resulting
boson self-energy diagram has the same power as the parent
vacuum diagram which is on the order of N0 for planar dia-
grams. It is noted that the one-loop boson self-energy dia-
gram �Fig. 2�, which can be created by attaching two vertices

to the vacuum diagram on the order of N, is also order of N0.
Therefore there are infinitely many planar diagrams which
contribute to the boson self-energy in the leading order of
N0. If one attaches two vertices to two fermion propagators
which belong to different single-line loops or if one starts
from a nonplanar vacuum diagram, the resulting boson self-
energy is down by an additional factor of 1 /N.

Fermion self-energy diagrams can be created by cutting a
fermion propagator as in Fig. 12. This procedure causes an
additional power of N−1 from one less single-line loop ��n
=−1�, N1 from two external fermion lines ��Ef =2�, and N−1

from one less fermion loop ��Lf =−1�. As a result, the fer-
mion self-energy diagram is down by N−1 from the vacuum
diagram. Therefore the leading-order fermion self-energy
corrections are on the order of N−1. There are infinitely many
planar diagrams that contribute to the leading frequency de-
pendence of the fermion propagator which is on the order of
N−1.

Leading-order three-point vertex functions can be created
by cutting a fermion propagator and attaching a vertex to
another fermion propagator as in Fig. 13. The resulting dia-
gram is on the order of N−1/2: an additional power of N−1/2

from �V=1, N−1 from �n=−1, N2 from �Ef =2 and �Eb
=1, and N−1 from �Lf =−1. All planar vertex corrections are
of the same order as the bare vertex.

For the fermion self-energy and the three-point vertex
function, the above counting is valid only when the external
fermion momenta are sufficiently close to the Fermi surface.
If external momenta are far from the Fermi surface, one can-
not make all internal fermions to be on the Fermi surface
without an additional tuning of internal momenta. As a re-
sult, the enhancement factor becomes smaller than what is
predicted for the case when external fermions are on the
Fermi surface. To be more precise, Eq. �20� is valid if



k
 	

k0
2/3

N
, �24�

where k is the momentum of the external fermion. In the

opposite limit, 

k
�

k0
2/3

N , there are additional factors in 1 /N.

FIG. 10. The full double line representation of Fig. 9. This dia-
gram needs to be drawn on the surface of a torus to avoid a
crossing.

FIG. 11. A boson self-energy diagram drawn in the full double
line representation. It has been created by attaching two vertices to
the vacuum diagram in Fig. 8. This diagram is nominally on the
order of N0 for any external momentum. But, it turns out that all
planar boson self-energy diagrams vanish �see the text�.

FIG. 12. A fermion self-energy diagram created by cutting fer-
mion propagator open in the vacuum diagram in Fig. 8. This dia-
gram is on the order of N−1 when external momentum is on the
Fermi surface.
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On the other hand, for the boson self-energy, Eq. �20� is
always valid, irrespective of the energy and momentum of
the external boson. This is because any boson momentum
can be decomposed into two momenta on the Fermi surface
and one can use the double line representation, which leads
to the counting in Eq. �20�.

The leading contributions come from the planar diagrams
where the genus of the underlying 2D surface is zero. In
principle, there can be infinitely many diagrams which are
order of N0�N−1� for the boson �fermion� self-energy and
N−1/2 for the three-point vertex function. In particular, the
boson self-energy has infinitely many leading-order terms at
any external momentum. This would have made the one-loop
boson propagator unreliable even in the large N limit. How-
ever, it turns out that all planar diagrams for the boson self-
energy correction beyond the one-loop level vanish due to a
kinematical reason. To see this, let us consider a three-loop
boson self-energy correction shown in Fig. 14,

��q� = − N−1� dk1dk2dl g�k1�g�k1 + q�

�g�k1 + l�g�k2�g�k2 + q�g�k2 + l�D�l�D�1 − q� .

�25�

This diagram is nominally on the order of N0 due to an
enhancement factor N1. Integrating over 
l, one obtains

��q� � � d
k1
d
k2

dk1y
dk2y

dk10dk20dl0dlyD�l�D�l − q�

�
1


k1
+ i�k10


1


k1
+ 
q + 2k1yqy + i�k10 + q0


�
1


k2
+ i�k20


1


k2
+ 
q + 2k2yqy + i�k20 + q0


�
��k10 + l0� − ��k20 + l0�


k1
− 
k2

+ 2�k1y − k2y�ly + i��k10 + l0
 − �k20 + l0
�

�26�

with 
k=kx+ky
2 and �x
= c

Nx
x
−1/3. Now we change the inte-
gration variables as k1y =k and k2y =k+k�. The integration
over k has poles at i�k10+q0
 /2qy and i�k20+q0
 /2qy, and
these poles are on the same side on the complex plane. This
can be seen from the fact that


q0
 � max�
k10
, 
k20
, 
l0
� . �27�

If Eq. �27� is not true, one of 
k10
 , 
k20
 , 
l0
 should be the
largest among all frequencies. If 
k10
 is the largest, then the
integration over 
k1

vanishes because all terms dependent on

k1

have poles on the same side in the complex plane. This
same argument applies to all other frequencies. Therefore
Eq. �27� should be satisfied in order for the integrations for

k1

, 
k2
, and 
l not to vanish. Then i�k10+q0
 /2qy and i�k20

+q0
 /2qy are on the same side in the complex plane and the
integration over k vanishes. This proves that Eq. �25� van-
ishes.

One can easily generalize the previous argument to prove
that all planar diagrams for boson self-energy correction van-
ish. Consider a general boson self-energy diagram shown in
Fig. 11. One can arrange internal momenta so that one inter-
nal momentum runs within each single-line loop as is shown
in Fig. 15. Here ki’s are momenta that run within fermion
loops and li’s are momenta that connects different fermion

FIG. 13. A vertex correction created by cutting a fermion propa-
gator open and attaching a vertex to the vacuum diagram in Fig. 8.
This diagram is on the order of N−1/2 when external fermion is on
the Fermi surface.

k1 + q

k2k1

l

k1 + l

l − q

k2 + l

k2 + q

q

FIG. 14. A planar three-loop boson self-energy.
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FIG. 15. The assignment of one internal momentum to each
closed single-line loop in the boson self-energy diagram in Fig. 11.
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loops through boson propagators. If one performs the inte-
grations over 
li

and changes the integration variables as

ki

=kix+kiy
2 for all i, k1y =k, k2y =k+k2�, k3y =k+k3�, . . ., k6y

=k+k6�, one can see that k dependencies arise only from
g�ki+q�’s. In order for the integrations for 
ki

and 
li
not to

vanish, the external frequency should be the largest of all
frequencies in magnitude, that is, 
q0
�max�
ki0
 , 
li0
�. As a
result, the integration over k has all poles on one side in the
complex plane: all q0+ki0 have the same sign as q0. There-
fore all planar diagrams for boson self-energy vanish. The
reader may wonder why the one-loop boson self-energy �Fig.
2� does not vanish. This is because the integration over ky
obtained after performing the kx integration in Eq. �6� has
only one pole. This is special for the one-loop diagram and
all higher-loop planar boson self-energy graphs vanish.

Although the one-loop result is accurate for the boson
self-energy in the large N limit, there are infinitely many
nonvanishing planar diagrams for fermion self-energy and
vertex correction. This is because in those diagrams there
exist “isolated” internal fermion propagators which are not
part of any fermion loops �for example, the fermion propa-
gator with momentum p+ l in Fig. 4� and the integration over
k �the uniform component of kiy� can have poles in both sides
in the complex plane due to contributions from the isolated
fermion propagators. All planar fermion self-energy dia-
grams are on the order of N−1 and planar vertex corrections
are order of N−1/2, when external fermions are on the Fermi
surface. Since the leading frequency dependence of the fer-
mion propagator is on the order of N−1, one has to sum over
all planar diagrams to extract dynamical properties of low-
energy fermions. We note that the set of all planar diagrams
is much larger than the set of rainbow diagrams that can be
summed in a closed Dyson equation.15 The fact that the low-
energy dynamics of fermion is governed by the infinitely
many planar diagrams implies that fermions on the Fermi
surface remain strongly coupled even in the large N limit.

A few comments are in order for Eq. �20�. First, the
counting of power in 1 /N is self-consistent in that we ob-
tained Eq. �20� based on the assumption �suggested by the
one-loop result� that the leading self-energy corrections of
boson and fermion are on the order of N0 and N−1, respec-
tively. The fact that Eq. �20� predicts the same conclusion
implies that the power counting will not change even though
one uses the full propagators obtained by summing over all
planar diagrams. Second, some nonplanar diagrams may
have a higher power in 1 /N than nominally predicted in Eq.
�20� because they can vanish to the leading order due to an
even-odd symmetry and there can be log N correction.15,27

However, all planar diagrams obey Eq. �20� without log N
correction.

IV. STABILITY AND ANOMALOUS DIMENSION

The coupling e in Eq. �5� receives quantum corrections
only from the boson self-energy due to the Ward identity.
The absence of nonvanishing planar diagrams for boson self-
energy beyond the one-loop level implies that the one-loop
beta function is exact in the large N limit.28 Since the one-
loop boson self-energy has no divergence, the beta function

is zero and the theory is stable in the large N limit. The fact
that the one-loop result is exact is rather remarkable given
that the theory remains strongly coupled even in the large N
limit. This is consistent with an earlier two-loop
calculation.13 The absence of higher order corrections is
reminiscent of supersymmetric theories where certain prop-
erties are protected from higher-loop corrections due to the
nonrenormalization theorem.29

In contrast to the boson, it is difficult to extract detailed
dynamical properties of low-energy fermions on the Fermi
surface even in the large N limit because there are infinitely
many planar diagrams to be considered. However, one can
attempt to study the dynamics of fermion on a general
ground. Here we will show that there is no UV divergence in
all planar diagrams individually, if one uses the one-loop
propagators for the computation of higher-order planar dia-
grams. Of course, the one-loop propagator is not reliable for
fermion on the Fermi surface even in the large N limit. The
present approach amounts to summing the one-loop self-
energy first and then include the rest of the planar diagrams
to examine whether there is UV divergence or not.

According to Eq. �3�, the scaling dimension of k is given
by

�k0� = 1, �kx� =
2

3
, �ky� =

1

3
. �28�

Every loop contributes scale 2 and every propagator has
scale −2 /3. Therefore, the superficial degree of divergence
of a E-point vertex function is given by

Ds = 2L −
2

3
I = 2�1 −

E

3
� , �29�

where E is the number of external lines, L is the number of
loops, and I is the number of internal propagators. Here we
have used the relations, 3V=E+2I and L= I−V+1.

There are three kinds of diagrams which are primitively
divergent, that is, diagrams which have generic divergence at
UV without divergent subdiagrams. The primitively diver-
gent diagrams are the two-point vertex functions �self-
energies� with Ds=2 /3 and the three-point vertex function
�Ds=0� which may have power-law and logarithmic diver-
gences, respectively.

Although the superficial degree of divergence suggests
that these diagrams are potentially UV divergent, there is
actually no divergence for planar diagrams which are domi-
nant in the large N limit. This can be seen from an argument
similar to the one that we used to prove that all planar boson
self-energy diagrams vanish. For planar diagrams, one can
assign an internal momentum ki for each single-line loop, as
we did in Fig. 15. �In contrast to Fig. 15, here we use ki for
all internal momenta to keep the notation for the following
discussion simpler.� If external frequency is zero, the integra-
tion over 
ki

does not vanish only when


ki0
 � maxj�i�
kj0
� , �30�

where kj’s are momenta of fermion propagators which are
parts of the ith loop. For example, for the integration of 
k2
in Fig. 15 to survive, one should have
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k20
 � max�
l10
, 
l20
, 
l50
, 
l60
� , �31�

if q0=0. These set of constraints cannot be simultaneously
satisfied for all i’s. If one of the internal frequencies, say km0,
is the largest, then the 
km

integration vanishes because all
poles are on the same side in the complex plane. This implies
that the volume of frequency integral vanishes when the ex-
ternal frequency vanishes. Since at least one frequency inte-
gral has a UV cutoff at an external frequency, the remaining
integrations have a reduced degree of divergence which is at
most 2 /3−1=−1 /3. Therefore there is no UV divergence in
all planar diagrams.

If individually finite planar diagrams can be summed to
give a finite result, the theory is UV finite in the large N
limit. This would imply that the scaling dimension of the
fermion field given by Eq. �3� will not be modified by
higher-loop diagrams in the large N limit. However, we em-
phasize that it is not clear whether the summation over pla-
nar diagrams is convergent or not. We believe that the true
nature of this theory has not been fully understood.

V. CORRELATION FUNCTION OF GAUGE-INVARIANT
OPERATORS

Since the fermion operator is not gauge invariant, the fer-
mion Green’s function cannot be directly measured. There-
fore it is of interest to study how correlation functions of
gauge-invariant operators are affected by the fact underlying
fermions remain strongly coupled in the low-energy limit.
Here we consider correlation functions of the density opera-
tor, ��x�=� j

��x�� j�x�. The two-point correlation function
���q���−q�� is proportional to the self-energy of the gauge
boson. As is shown in Sec. III, all planar boson self-energy
diagrams vanish except for the one-loop diagram. Therefore
the density-density correlation function shows the usual
Fermi-liquidlike behavior in the large N limit.13 Higher order
terms become important only for the n-point density correla-
tion function with n�3. Contrary to the two-point correla-
tion function, higher order diagrams for the n-point function
with n�3 do not automatically vanish. Since there are more
than one external frequency, the argument used in Sec. III to
show that all planar boson self-energy diagrams with more
than one loop vanish does not apply. For example, let us
consider the three-point density correlation function given by

D3�q1,q2� = ���q1���q2���− q1 − q2�� . �32�

For generic external momenta, the leading contribution is
given by the one-loop diagram shown in Fig. 16, which is on
the order of N. However, for a set of external momenta
which connect points on the Fermi surface, the magnitude of
the diagram is enhanced. If the spatial components of the
external momenta can be written as

q1 = k2 − k1,

q2 = k1 − k3, �33�

where ki’s are momenta residing on the Fermi surface, the
diagram is enhanced to the order of N2. For these special
external momenta, there is a channel for all virtual particle-
hole excitations to remain on the Fermi surface and there is
an enhancement factor N. This is illustrated in Fig. 17. For
these external momenta, there are infinitely many planar dia-
grams which are of the same order. For example, the diagram
in Fig. 18 is on the order of N0 for generic external momenta
but it is enhanced to the order of N2 if external momenta
satisfy Eq. �33�, as explained in Fig. 19.

FIG. 16. The one-loop diagram for the three-point density cor-
relation function. The dots represent the density operators.

k y

k x

q

q

1

2

2
−q−q

1

FIG. 17. �Color online� A set of external momenta for which the
three-point density correlation function is enhanced. If external mo-
menta are chosen so that all of them connect two points on the
Fermi surface, it is possible that all internal fermions stay on the
Fermi surface. This gives rise to the divergence 1 /� for the diagram
in Fig. 16 if the bare fermion propagator is used. This can be un-
derstood following the same argument given in Sec. III. There are
three internal propagators which can diverge when �=0. Since
there are only two integrations for the spatial components of inter-
nal momenta, a linear divergence survives. Once the fermion self-
energy is included, the linear divergence is traded with an enhance-
ment factor N.

FIG. 18. A three-loop planar diagram which contributes to the
leading-order three-point density correlation function when external
momenta are chosen so that all of them connect two points on the
Fermi surface.
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VI. DISCUSSIONS

A. Comparison with the SU(N) gauge theory

The genus expansion of the present theory is similar to
that of the 3+1D SU�N� gauge theory in the large N limit.20

In the SU�N� gauge theory, all Feynman diagrams can be
naturally drawn in the double line representation because the
gauge field is in the adjoint representation. Although the
physical origin is very different from the present case, non-
planar diagrams with genus g are suppressed by the factor
1 /N2g. One key difference from the present theory is that
there is another dimensionless parameter called ’t Hooft
coupling �=NgYM

2 in the SU�N� gauge theory, where gYM is
the gauge coupling. This allows for a double expansion of
the theory in 1 /N and �. For �	1, the theory is in the
perturbative regime. In the large N limit with a large but
fixed ’t Hooft coupling ��1, planar diagrams with a large
number of loops are dominant and the usual perturbative
approach breaks down even in the large N limit. It has been
suggested that a more weakly coupled effective description
of the theory should be a string theory in an one higher
dimensional �4+1D� curved space.30 The anti-de-Sitter
space/conformal field theory �AdS/CFT� correspondence31–33

is a concrete conjecture of this kind for a supersymmetric
SU�N� gauge theory. On the other hand, the present theory
with Fermi surface has no ’t Hooft coupling that one can
tune in addition to N. To put it otherwise, the effective ’t
Hooft coupling has been set to be on the order of 1. This is
because there is no dimensionless parameter in the theory
other than N as discussed earlier. With ��1, the theory is
still strongly interacting but it is most likely not in the regime
where one can use a dual gravity description in a weakly
curved space time.34–36 It would be of great interest to find a
more weakly coupled description, which is likely to be a
gauge-invariant description, for this non-Fermi-liquid state.

B. Extension to multiple patches and applicability
of the theory with one patch

In this paper, we have focused on low-energy fermion on
one side of Fermi surface �one patch�. If Fermi surface is

closed, one should consider multiple patches which include
the opposite side of the Fermi surface because fermions
whose Fermi velocities are parallel or antiparallel with each
other are all strongly coupled with the boson in the same
momentum region. The theory which includes fermions with
opposite Fermi velocities is given by

L = �
j

�
s=�

� js
� ���� − isvsx�x − vsy�y

2�� js

+
e

�N
�
j,s

sa� js
� � js + a�− �y

2�a , �34�

where � j−�� j+� is the fermion whose velocity is parallel �an-
tiparallel� to the x direction. It turns out that this theory is
more complicated. For example, vacuum diagrams which in-
clude both �+ and �− also contribute to planar diagrams. An
example is shown in Fig. 20. Those diagrams have the same
enhancement factor as those which involve fermionic loops
only on one side of the Fermi surface, if the curvatures of the
Fermi surfaces are the same, that is, v+x /v+y =v−x /v−y. A
complication arises because there is no constraint on internal
frequencies such as Eq. �30� in the presence of fermions with
opposite velocities. As a result, planar boson self-energy dia-
grams do not vanish in general and there exist UV diver-
gences which are absent in the one patch theory at least in
the large N limit. One possible scenario is that although there
are UV divergences in individual diagrams, they cancel with
each other and the coupling does not run. This scenario is
consistent with the explicit two-loop calculation.13 If this is
the case, we will obtain a similar picture as the one patch
theory. The question on how to sum all planar diagrams still
remains.

If the curvatures on the opposite sides of the Fermi sur-
face do not match �v+x /v+y �v−x /v−y�, diagrams which has
mixed fermion loops like the one in Fig. 20 has smaller

FIG. 19. If the external momenta in Fig. 18 satisfy Eq. �33�,
every external momentum can be decomposed into two momenta
on the Fermi surface. This allows one to draw the diagram in the
double line representation as is shown in this figure. There is one
loop of solid single line in the double line representation, which
implies that there is an one-dimensional singular manifold in the
space of internal momenta within which all internal fermions stay
on the Fermi surface. As a result, the order of the diagram is given
by Q=−4 /2+2+ �1+3−2�=2, where we use V=4, Lf =2, n=1, Ef

=0, and Eb=3 in Eq. �20�.

FIG. 20. A planar diagram which include loops of fermions on
both sides of the Fermi surface. The solid �dashed� lines represent
the propagator of fermions on one �the opposite� side of the Fermi
surface. In order for fermions to remain on the Fermi surface, two
fermions propagators that face each other should run in the opposite
�same� direction if the two fermions are on the same �opposite� side
of the Fermi surface.
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enhancement factor because all fermions cannot stay on the
Fermi surface because of the curvature mismatch. In this
case one side of the Fermi surface which has a smaller cur-
vature will be dominant and one can focus on one patch as
we did in this paper.
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